Optimal Data Projection for Kernel Spectral Clustering
نویسندگان
چکیده
Spectral clustering has taken an important place in the context of pattern recognition, being a good alternative to solve problems with non-linearly separable groups. Because of its unsupervised nature, clustering methods are often parametric, requiring then some initial parameters. Thus, clustering performance is greatly dependent on the selection of those initial parameters. Furthermore, tuning such parameters is not an easy task when the initial data representation is not adequate. Here, we propose a new projection for input data to improve the cluster identification within a kernel spectral clustering framework. The proposed projection is done from a feature extraction formulation, in which a generalized distance involving the kernel matrix is used. Data projection shows to be useful for improving the performance of kernel spectral clustering.
منابع مشابه
Clustering with Adaptive Structure Learning: A Kernel Approach
Many similarity-based clustering methods work in two separate steps including similarity matrix computation and subsequent spectral clustering. However, similarity measurement is challenging because it is usually impacted by many factors, e.g., the choice of similarity metric, neighborhood size, scale of data, noise and outliers. Thus the learned similarity matrix is often not suitable, let alo...
متن کاملGreedy Spectral Embedding
Spectral dimensionality reduction methods and spectral clustering methods require computation of the principal eigenvectors of an n × n matrix where n is the number of examples. Following up on previously proposed techniques to speed-up kernel methods by focusing on a subset of m examples, we study a greedy selection procedure for this subset, based on the featurespace distance between a candid...
متن کاملRanking Overlap and Outlier Points in Data using Soft Kernel Spectral Clustering
Soft clustering algorithms can handle real-life datasets better as they capture the presence of inherent overlapping clusters. A soft kernel spectral clustering (SKSC) method proposed in [1] exploited the eigen-projections of the points to assign them different cluster membership probabilities. In this paper, we detect points in dense overlapping regions as overlap points. We also identify the ...
متن کاملA survey of kernel and spectral methods for clustering
Clustering algorithms are a useful tool to explore data structures and have been employed in many disciplines. The focus of this paper is the partitioning clustering problem with a special interest in two recent approaches: kernel and spectral methods. The aim of this paper is to present a survey of kernel and spectral clustering methods, two approaches able to produce nonlinear separating hype...
متن کاملAn improved spectral clustering algorithm based on local neighbors in kernel space
Similarity matrix is critical to the performance of spectral clustering. Mercer kernels have become popular largely due to its successes in applying kernel methods such as kernel PCA. A novel spectral clustering method is proposed based on local neighborhood in kernel space (SC-LNK), which assumes that each data point can be linearly reconstructed from its neighbors. The SC-LNK algorithm tries ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014